Artificial Intelligence

Lecture: Problem Solving using Search (Single agent search)

Search Problem

A search problem consists of the following:

- S: the full set of states
 - s_o: the initial state
 - $A:S \rightarrow S$ is a set of operators
 - G is the set of final states.

- The <u>search problem</u> is to find a sequence of actions which transforms the agent from the initial state to a goal state $g \in G$. A search problem is represented by a 4-tuple {S, s_o, A, G}.
 - S: set of states
 - $s_o \in S$: initial state
 - A: S□S operators/ actions that transform one state to another state
 - G : goal, a set of states.

Example problem: Pegs and Disks problem

- Consider the following problem. We have 3 pegs and 3 disks.
- **Operators**: one may move the topmost disk on any needle to the topmost position to any other needle
- In the goal state all the pegs are in the needle B as shown in the figure below.

Step 1: Move $A \rightarrow C$

Step 2: Move $A \rightarrow B$

Step 3: Move $A \rightarrow C$

Step 4: Move $B \rightarrow A$

Step 5: Move $C \rightarrow B$

Step 6: Move $A \rightarrow B$

Goal State

Example: the 8-puzzle

• How would you use AI techniques to solve the 8-puzzle problem?

Initial State

Goal State

8-puzzle partial state space

Problem Definition - Example, 8 puzzle

- The state space representation for this problem is summarized below:
 - **States**: A state is a description of each of the eight tiles in each location that it can occupy.
 - **Operators/Action**: The blank moves left, right, up or down
 - **Goal Test**: The current state matches a certain state (e.g. one of the ones shown on previous slide)
 - Path Cost: Each move of the blank costs 1

Thank You!

Any Questions?